登陆注册
17868400000021

第21章 学生数学发现的启迪(2)

发现海王星

太阳系有九大行星。由里往外数,最外面的三颗,依次是天王星、海王星和冥王星。这三颗行星,因为离地球越来越远,不容易看到,所以一个比一个发现晚。

1781年,英国天文学家赫歇耳,用望远镜发现了天王星。在研究天王星运行轨道时,发现实际观察的轨道,与根据力学原理,用微积分等数学工具计算出来的轨道不相符合。这是为什么呢?当时就有人预言:在天王星的外面,可能还存在着一颗尚未发现的新行星。可是,在无边无际的天空,到哪儿去找这颗新行星呢?

64年过去了。到了1845年,英国剑桥大学数学系学生亚当斯,根据力学原理,利用微积分等数学工具,进行了一系列困难的计算,算出了这颗新行星的轨道。这年10月21日,他把计算的结果,寄给了英国格林威治天文台台长艾利,可惜没有引起重视,也没有人用望远镜去寻找这颗新行星。

比亚当斯稍晚,法国巴黎天文台青年科学家勒威耶,用微积分等数学工具,计算了由几十个方程组成的方程组,算出了这颗新行星的轨道。1846年9月18日,勒威耶写信给当时拥有详细星图的柏林天文台的伽勒。他在信中写道:“请你把你们的天文镜指向黄经326°外的宝瓶座内的黄道的一点上,你就将在离此点的1°左右的区域内,发现一个圆面显明的新行星。”伽勒于1846年9月23日夜间,就在离所指点相差52′的地方,发现了这颗新行星。人们给它取名海王星。

这颗新行星的发现,完全是根据力学原理,用微积分等数学工具算出来的。因此,人们称海王星为一颗笔尖上的行星。

1915年,美国天文学家洛韦耳,用同样方法算出了太阳系中最远的一颗行星——冥王星的存在。1930年,美国的汤波真的发现了这颗行星。

利用微积分进行计算,人们还解决了月亮会不会撞到地球上的问题。

当时天文观测的结果表明,月亮的轨道正在不断缩小。人们开始担心是不是有那么一天,月亮会和地球相撞呢?后来用微积分计算,证明了月亮轨道的缩小是周期性的,缩到一定程度后还要开始膨胀,根本用不着杞人忧天,担心月亮和地球相撞。

一门生命力强的学科,必须有坚实的理论基础。微积分的基础是极限理论。微积分创立于17世纪,可是极限理论的提出却相当晚,它是在19世纪,由法国的柯西和德国的维尔斯特拉斯提出来的。

在极限理论产生之前,人们对微积分的基础有着各种不同看法和争论。当时,虽然在科学研究中广泛使用微积分,可是对于什么是微积分的基础,却没有一个共同的认识。恩格斯说过:大多数人进行微分和积分,并不是由于他们懂得他们在做什么,而是出于单纯的相信,因为直到现在得出的结果总是正确的。

极限理论的产生,统一了人们的认识,推动了微积分的发展。

1960年,美国数学家鲁滨逊运用数理逻辑的科学方法,把微积分建立在一种新的数学理论之上。科学家为了区别以极限理论为基础的微积分,把在新基础上建立起来的微积分叫做“非标准分析”。

非标准分析问世20年来,引起了数学界的广泛注意,也产生了一些不同的看法。有的数学家认为,非标准分析比传统的微积分更严谨,更适用于进行理论上的探索。也有的数学家认为,非标准分析把传统微积分中丰富的思想砍掉了;个别人甚至把传统微积分比做一个美女,说非标准分析是一具“美女的骷髅”。

认识在争论中提高,科学在争论中发展。明天的微积分,一定会更加完善、充实和有用!

3.二十世纪数学的领航人

19世纪最后一年——1900年的夏天,在巴黎塞纳河畔举行的第二次国际数学家代表大会上,一位30多岁的年轻数学家在他所做的报告《数学问题》中,提出了23个数学问题,总结他那个时代的数学研究。在此后的数十年里,这23个问题几乎完全左右着数学发展的方向,对20世纪的数学发展产生了巨大的影响,为许许多多的数学家们带来欢乐,也带来苦恼。这个提出23个问题的人,便是德国数学家希尔伯特(1862~1943,1888年他以独创方式发展了不变量的数学,证明了不变系的基的有限性)。后来,这23个问题被称为“希尔伯特问题”。

希尔伯特于1862年1月23日生于德国的哥尼斯堡(现今为俄罗斯的加里宁格勒)。希尔伯特的母亲是一位对哲学和天文学极有兴趣的女性。希尔伯特从小便受到母亲的熏陶,这为他后来的成长产生了良好的作用。

希尔伯特幼年时记忆力很差,理解概念的反应速度也极慢,经常受到老师的批评。后来上中学时,他结识了犹太人闵可夫斯基家才华出众的三兄弟。希尔伯特希望自己能像闵可夫斯基兄弟那样,受到人们的尊重。他努力克服自身的弱点,深入体会数学中的概念,在闵可夫斯基兄弟的影响下,希尔伯特找到了他喜爱的科目——数学。

后来,他分别在哥尼斯堡大学、海德堡大学学习。数学名家富克斯的数学思想深深影响了希尔伯特,后来他又返回哥尼斯堡大学。不久,闵可夫斯基、希尔伯特和年龄稍大一些的赫维茨,成了哥尼斯堡数学圈子里著名的“三剑客”。他们几乎讨论了数学各个领域的问题,相互交换获得的研究成果,交流彼此间的想法和研究设想。

希尔伯特大学毕业以后,进行了一次成效显著的学习旅行,这次旅行使他弥补了因身居哥尼斯堡小城而造成的孤陋寡闻的缺憾。希尔伯特拜访了德国数学界的传奇人物克莱因。希尔伯特选听了克莱因的课,还参加了克莱因的一个讨论班。他深为克莱因所器重,克莱因推荐希尔伯特前往法国巴黎。在巴黎,他了解到国际数学界的研究状况,大大地开阔了眼界。

后来回到优美宁静的哥尼斯堡,希尔伯特沉浸在关于不变量理论的果尔丹问题里。这一问题,数学家们已经花费了很大的力气。但只经过半年的艰苦攻关,果尔丹问题居然被希尔伯特解决了。

1895年,应克莱因之邀,他来到数学家高斯的故乡哥廷根。来到哥廷根不足一年,希尔伯特和闵可夫斯基合作,完成了一篇关于数论研究方面的综合论文,成为数论领域中的经典作品。不久,又发表了《相对阿贝尔域理论》的论文,建立了探讨“类域”论所必需的方法和概念。这是希尔伯特独创性的显露。1898年~1899年,希尔伯特编著了囊括整个几何学领域的重要著作《几何基础》,获得科学界的称赞。

偏偏就在人们的赞叹声中,希尔伯特瞄准了著名的“狄里克莱原理”。直到19世纪末,数学家仍把对这个原理的探索看做死胡同,然而希尔伯特却妙手回春,“复活”了狄里克莱原理,在国际数学界震动一时。

20世纪来到了,希尔伯特的数学兴趣更广泛了,他几乎涉足了数学的全部领域。在闵可夫斯基和赫维茨的协助下,1920年夏,在第二次国际数学代表大会上,他提出了著名的“希尔伯特问题”。随着狄里克莱原理的解决,他为数学分析的精确性和逻辑无矛盾性奠定了重要基础。

同类推荐
  • 中国向何处去

    中国向何处去

    改革开放30年后的今天,我们向哪里去?所走的道路选对了,我们就可以避免发展中的陷阱;走错了,我们就可能跌人社会政治动荡、经济低速发展、人民长期不富裕、国家竞争力不强并下降等发展的“中国陷阱”之中。
  • 新闻与正义(修订版)Ⅲ

    新闻与正义(修订版)Ⅲ

    本套丛书汇集了西方优秀记者们近100年来对新闻正义的理解和追求,其中绝大多数已成为新闻作品中的经典。虽然这些报道不能改变这个世界,但却可以让我们看得更真实、更完整。素以评选的权威、公正、严格而著称的普利策新闻奖,是美国乃至全球的最高奖,数十年来,它一直以新闻的公正、客观、准确、自由的精神作为其评选的准则,获奖作品更是因其直面社会政治、世道人心而成为新闻写作的范本。本书是该奖项获奖作品集,通过这些新闻报道,让我们看到更真实、更完整的世界。一部《新闻与正义》分明展示着,那些优秀的记者在与非正义抗争时,他们所能期待的最好命运就是将自己作品与非正义一起埋葬。
  • 中国人易读错的字,说错的话

    中国人易读错的字,说错的话

    《中国人易读错的字、说错的话》正是基于这样的目标,将我们在日常生活中经常会读错的字、说错的话分门别类地罗列出来。读者朋友们既可以在闲暇时集中阅读,也可以在出现疑问的时候进行查阅。
  • 实用司法文书写作大全

    实用司法文书写作大全

    本书主要介绍了司法文书写作的理论知识,并按照司法文书制作的不同机关、组织划分,分别介绍了公安机关的主要司法文书、人民检察院的主要司法文书、人民法院的主要司法文书等各种司法文书的写作知识和要领,以达到真正快速提高学生写作司法文书技能的目的,体现出理论性与实操性相结合的特点。
  • 媒介形象

    媒介形象

    事物的形象往往比事物本身还要重要。媒介形象就是一种延续历史、承载当下,更指向未来的力量。全书首次提出了媒介形象系统的设想,分析了媒介形象的内涵和认知规律,探讨了媒介形象的结构和功能,打通了“媒介的形象”和“在媒介上再现的形象”。给读者提供了媒介形象领域研究的最新成果,也可以帮助一些读者深刻理解媒介及媒介再现问题。
热门推荐
  • 超级天骄

    超级天骄

    三年前他是京城有名的纨绔大少,三年后经历了生死磨砺的他再次回到都市!张狂不可一世的他开始建立自己的帝国,世界黑道因为他的出现而拉开新的帷幕,经过不断的扩张和打拼,他最终站在了世界黑道的巅峰!在世人面前他是嚣张得不可一世的龙门门主,黑道天骄!但在自己的女人面前他是称职的护花使者!飞扬跋扈是我的专长,惹我女人,我必杀之!刀锋所向,谁与争锋……
  • 四维女皇

    四维女皇

    关于空间理论,翻翻书籍或者打开浏览器,可以找到很多相关理论依据或学术学说。比如平面可以理解为二维空间,我们生活的现实世界是在三维空间中,那么四维空间是什么呢?有学说指出,四维空间也是和二维、三维空间同时存在;在四维空间中看我们所生活的三维空间,就如同我们在现实的三维空间中看平面的二维世界一样,我们不仅可以看到它的全局,甚至还可以操纵它,改变它。那四维空间是否真的是和我们的空间并存?四维空间里的事物就在我们周围吗?我们在现实的三维世界中所发生的一切,都是由四维空间的生物决定的吗?这些,没人可以回答。但有位迟暮之年的女士,坐在某个公园的长椅上,同旁边一对情侣讲述了她曾经的黑暗史…….
  • 至之法

    至之法

    两位上界大能,出事后修为几乎尽失,被乱流扔到小世界..嵩明,上界法师白棱,地球人,机械爱好者,穿越在未来他们将一起回到那本源初界.....
  • 魂王座

    魂王座

    这也是一本关于天空与海、执着或懦弱、后退或远方的小故事
  • 悔梦仙缘

    悔梦仙缘

    妖,有何罪?花果山被你们焚烧,青丘山被你们屠尽。你们等着!仙?走开。佛?没兴趣。倒不如小伙伴们战天斗地,跟她打造一个铁通也似的懵懂江山。
  • 公主殿下恋爱中

    公主殿下恋爱中

    她是樱兰高校人称“完美女神”的优雅公主,在众人面前,她永远都是淑女、最温柔、最知性的。但是,为何他总挑她最邋遢的时候出现?不知道她最讨厌的就是被人发现她的真实面目吗?还有,最讨厌的是面前这位极品美少年,竟然为啥拿她的秘密作要挟,让她去给他做女佣?!门都没有!母老虎不发威,还当她是病猫啦?
  • 最强邪皇

    最强邪皇

    【暗系真灵眷顾者】——天生具备暗系灵晶。【感灵体质】——最强真灵感应力。【灵眸】——双眼可观敌人真灵。当这些结合在一个人的身上,那么这个人便拥有复制他人功法的能力!……经历痛苦与折磨的少年,背负着血海深仇,走向最强邪皇之路!
  • 妖虎初生

    妖虎初生

    汲灵气锻体,步修仙之道倾一世之力,只为渡劫重生剑锋饮血,征伐四方不若尽毁于吾手人族将兴,妖虎初生
  • 铭人铭言:铭言诗选

    铭人铭言:铭言诗选

    本书为黄宝铭的诗歌散文集,共分三册,其中《铭言诗选》为其古体诗词集,作者博览群书,写人、状物、暮景、抒情,用不同手笔作诗填词。
  • tfboys之剩下的爱恋

    tfboys之剩下的爱恋

    曾经他们爱过她们,曾经她们爱过他们,他们的爱坎坷不平。麻烦他们在一起注定是一场错误,他们是应该放弃还是应该一错再错?在樱花下许下的诺言,八年后是否还会实现?八年说短不短说长不长,可是八年他们会变吗?他们的爱情能守候八年吗?八年樱花开了,谢了,开了,谢了,开过八次,谢过八次,可这一切都变了,而他们的爱情还会像八年前一样,还是先樱花一样谢了。在这个金光灿烂的秋天,让我们一起来守候这份脆弱的爱情,让我们一起等待明年春天的花开和明年的花落。这场爱情你就是主角,你就是这张乐谱的谱写人,你就是决定命运的命运之神,让我们一起守候吧!