登陆注册
15848900000009

第9章 空间力系(1)

在生活中,尤其是在工程中物体所受力的作用线往往不在同一平面内,而是按空间分布,这样的力系叫空间力系。根据各力的作用线的相对位置不同,空间力系又分为空间汇交力系、空间平行力系和空间任意力系。

本章将从研究最基本的空间力系入手,进一步研究物体在空间力系作用下的平衡问题,重点讨论轴类零件的空间力系的平衡问题。另外,讨论和研究如何确定物体重心,为专业课学习,零部件的制造、开发打下基础。

4.1空间力的投影及空间汇交力系

研究空间力系,首先要研究空间力的分解,重点是空间力系在平面坐标系中的分解。

4.1.1力在空间直角坐标轴上的投影及其求解根据力在坐标轴上投影的概念,同样可以将一个任意力在空间直角坐标轴上进行分解,其分解的方法与平面内力的分解基本相同,具有同样的规律。

例如,若已知力F与3个坐标轴x、y、z的夹角分别为、β、γ时,如图41所示,则力F在3个坐标轴上的投影恰好等于力F的大小乘以力F与各坐标轴夹角的余弦,即。

由图41也可直接看出,若以F为对角线,以3个坐标轴为棱边做出正六面体,则此六面体的3条棱边之长恰好等于F在3个轴上投影的绝对值。

当空间力F与某一坐标轴,如z轴的夹角为γ;力F在垂直此轴的坐标面(xOy面)上的投影与另一坐标,如x轴的夹角φ已知时,则可先将力F投影到该坐标面内,然后再将力向其他两个坐标轴上进行投影。这种投影的方法,叫做二次投影法。

如图42所示,将F在3个坐标轴上进行投影,得在式(44)~(46)中,若以Fx、Fy、Fz表示力F沿直角坐标系x、y、z的正交分量,以i、j、k分别表示沿x、y、z坐标轴的单位矢量,如图42所示,则。(4-7)由此可知,当已知力F在3个坐标轴上的投影时,也可求出F的大小和方向,即。

例4.1已知力沿直角坐标轴的解析式为,试求这个力的大小和方向,并作图表示之。

解将给定的表达式与公式(47)相比较,得。

根据题意作图,如图43所示。

4.1.2空间汇交力系的合成与平衡条件

与平面汇交力系相同,对空间汇交力系也分别用几何和解析法进行研究、分析。若分布在空间的若干个力的作用线汇交于一点,则称由这些力组成的力系为空间汇交力系。空间汇交力系的合力等于各分力的矢量和,合力的作用线通过汇交点。其矢量表达式为。

由于空间汇交力系合成一个合力;因此空间汇交力系平衡的必要和充分条件是,该力系的合力为0,即。

要使式(49)成立,则必须满足。

结论:空间汇交力系平衡的必要和充分条件是,该力系中所有各力在3个坐标轴上的投影的代数和分别为0。

方程(410)也叫做空间汇交力系平衡方程。

在应用空间汇交力系平衡方程解决具体问题时,与平面汇交力系所不同的是,要列3个方程,并求3个未知数。在解决实际问题时,尤其是在工程应用时,一定要弄清题意,搞清其存在的几何关系,并选取适当的坐标轴。坐标轴的选取对提高解决问题的能力,提高解题的技巧具有重要意义。

例4.2物体所受重力为FG,用杆AB和位于同一水平面的绳子AC与AD支承,如图44所示。已知FG=1000N,CE=ED=12cm,EA=24cm,β=45°,不计杆本身的重量。求绳子的拉力和杆所受的力。

解取A为研究对象。

由于作用于A点的力有重力、绳子的两个拉力及杆的约束反力,如图44(b)所示。

因为杆本身的重量,则反力必沿杆AB的轴线,设该力为拉力,则相等相反的力就是杆所受到的力。由题意知,上述力组成一空间汇交力系。

取如图44(b)所示的坐标系,由于对于z轴的平衡方程为。

式中,负号表示杆所受的力是压力。

应用空间力的投影公式,将各力的投影汇集在水平面xy上,得一平面汇交力系,如图44(c)所示,其中FS是FS的投影,其大小为FS=FSsinβ。则即绳子的拉力大小均为559N,方向如图44(c)所示。

4.2力对点和轴的矩

4.2.1力对点的矩

在前面,我们已经学习了平面力系中力对点的矩的概念。实际上平面力系中力对点的矩是空间力系中力对通过矩心并垂直于平面的轴的矩。例如,对于一个平面来说,齿轮的转动可以看做是绕轴心的转动,但也以看作是在空间内齿轮绕z轴的转动。也就是说,对于一个观察者来说,平面与空间有时是相对而言的,但对于一些比较具体和抽象的物体的运动,其空间与平面的区分就十分明显了。

定义4.1力对轴的矩是使刚体绕轴转动的效应,用Mz(F)来表示。在国际单位制中,力对轴的矩的单位是牛顿·米,即N·m。

注意:在力与轴垂直的特殊情况下,力对轴的矩与力对点的矩是一致的。

力对点的矩的大小用公式表示为Mz(F)=±Fh。

如图45所示,以r表示力作用点A的矢径,则矢积r×F的模等于三角形OAB面积的两倍,其方向与力矩矢Mz(F)是一致的。

因此,可得Mz(F)=r×F。

式(411)为力对点的矩的矢积表达式,即力对点的矩矢等于矩心到该力作用点的矢径与该力的矢量积。

若以矩心O为原点,作空间直角坐标系Oxyz,用单位矢量表达式表示,则矢径r和作用力F将分别是得行列式的解(参考高等数学有关知识)为。

由于力矩矢量Mz(F)的大小和方向都与矩心O的位置有关;故力矩矢的始端必须在矩心,不可任意移动,这种矢量称为定位矢量。

4.2.2力对轴的矩

如图46所示,力对轴的矩是力使刚体绕该轴转动效应的量度。其代数量的大小等于此力在垂直于该轴的平面上的投影对于这个平面和轴的交点的矩,用公式表示为式(414)中的正负号表示力对轴的矩的转向。通常规定:从轴的正向看去,逆时针转动的力矩为正,顺时针转动的力矩为负。

力对轴的矩的单位也是牛顿·米,即N·m。

在计算力对轴的矩时要注意:

(1)当力的作用线与轴相交,或力的作用线与轴平行时,也就是说,当力矢与轴共面时,力矩为0;(2)空间力系的合力对某一轴的矩等于力系中各力对同一轴的矩的代数和,用公式表示为在生产实际和工程及实验计算时,在注意区分空间力系与平面力系的同时,要合理正确地选择坐标轴,以取得最佳解决问题的方案。

例4.3铅垂力F=500N,作用于曲柄上,如图47所示。求该力对于各坐标轴的矩。

解力F对于各坐标轴的矩分别为Mx(F)=-F×(0.30+0.06)=-180N·m,My(F)=-F×0.36×cos30°=-155.9N·m,Mz(F)=0。

例4.4传动轴上圆柱斜齿轮所受的总啮合力为Fn,如图48所示。齿轮压力角为,螺旋角为β,节圆半径为r。求该力对于各坐标之矩。

解将啮合力为Fn分解为沿坐标轴的3个分力,如图48(b)所示。则根据合力矩定理,即力矩的性质,有力Fn对于各坐标之矩分别为Mx(Fn)=Mx(F)+Mx(Fy)+Mx(Fz)=Fnrcossinβ-12。

4.3空间力系和平衡方程

空间力系的简化与同平面力系一样,在此不作叙述。总之,空间任意力系向任意一点O简化,可得到一个力和一个力偶。这个力等于各力的矢量和,并通过O点;这个力偶的矩矢等于各力对O点的矢量和。

空间任意力系平衡的必要和充分条件必然是:力系的主矢和力系对任意一点的主矩都等于0,即。

因此,空间力系平衡的必要和充分条件是:力系中各力在直角坐标系的每一个轴上的投影代数和分别为0;各力对3个坐标轴的矩代数和也分别等于0。

不难看出,利用公式(416)可列出含有6个未知量的方程。

空间力系平衡方程包含了所有特殊力系的平衡方程。下面讨论几种特殊情况,在应用时要加以注意。

1.空间汇交力系

2.空间平行力系

如图49所示,取坐标轴z与各力平行,则各力对z轴的矩都等于0,同时各力在x、y两坐标轴上的投影也等于0。于是都成立。

因此,空间平行力系的平衡方程为。

3.空间力偶系

因为空间力偶系合成的结果是使一个力偶在空间任意系平衡方程中力的3个投影方程成了恒等式,所以空间力偶系的方程为。

4.4空间力系和平衡方程的应用

例4.5AB、AC、AD铰接于A点,其下悬挂一重力为FG的物体,如图410所示。其中,AB与AC互相垂直且长度相等,B、C、D均为铰接点。若FG的大小为1000N,三根杆的自重均不计,试求各杆所受的力。

同类推荐
  • 未来科技新看点

    未来科技新看点

    本套系列丛书推出10辑,主打科技牌。少年儿童要想成为一个有科学头脑的现代人,就要对科学知识和科学热点有一个广泛的了解,这样才能激发他的兴趣和爱好。
  • 国际法视野下的西部地区生态环境保护

    国际法视野下的西部地区生态环境保护

    本书的写作,目的在于通过对生态环境的一系列国际条约、法律文件的解读,为构建与国际法律制度相协调之西部生态环境法律体系提供理论上的支撑。因此,本书从环境问题全球化与生态环境的国际立法入手,阐述了《国际法视野下的西部地区生态环境保护》环境权、生态安全、环境影响评价、环境侵权责任及救济相关的国际或不同国家或地区的理论和立法实践,最后详细分析了淡水资源、土地资源、大气保护、生物多样性、森林资源、危险废物的国际管理立法,试图从中寻找西部生态环境立法制度上的缺陷与不足,从国际法的视角为西部生态环境立法提供理论和实践上的参考。
  • 探究式科普丛书-生物的环境:生态学

    探究式科普丛书-生物的环境:生态学

    生物在生存和发展过程中,对周围的空气、光照、水分、热量和无机盐类有着各自不同的要求。而生物之间在长期的演化中,逐渐形成了相互依存、相互竞争的关系。在生态环境中,人是重要的一环。为了满足自身的需要,人类不断地改造环境,环境反过来又影响了人类。这就是生态学。那么,生物和它们生活的环境的关系到底是怎样的呢?人们研究这一关系的目的又是什么呢?读完这本书你会有一个系统的了解。
  • (探究式科普丛书)解读人类与地球

    (探究式科普丛书)解读人类与地球

    本书从地球起源入手,系统地阐述了地球的基础知识,形态特征,地球位置形成以及和其他星球的关系,并且还介绍了地球的灾害,地球的未来,人类的生活与地球息息相关,旨在让读者更多更全面地了解地球,了解人类赖以生存的唯一的家园。
  • 滑波、泥石流防范与自救

    滑波、泥石流防范与自救

    自然灾害无处不在,无时不在,迄今为止,人类还没有能力阻止它的发生和带来的损害。大多数人在突然遭遇自然灾难时会彻底崩溃,他们或哭泣、或尖叫,却不知此时是需要迅速行动的最关键时刻。只有少数人能保持冷静,利用自己所学的灾害自救知识,并迅速采取行动脱离险境、减小损害。因此,如果幸运的你还没有亲身经历过自然灾难,请千万不要掉以轻心,因为我们谁也无法预料自己会在何时遇到何种灾难。
热门推荐
  • 网游之黎明之上

    网游之黎明之上

    等级设定:觉醒前:1~20级转职21~50级一转51~70级二转71~100级觉醒觉醒后:10~40级三转41~100级四转职业设定:修罗:1.亡灵修罗2.死灵修罗3.毁灭修罗武圣:1.道法武圣2.杀戮武圣3.守护武圣天使:1.星空天使2.神之天使3.魔之天使法神:1.自然法神2.灭绝法神3.通灵法神召圣:1.诡灵召圣2.神控召圣3.诅咒召圣箭魔:1.月舞箭魔2.日奇箭魔3.空绝箭魔剑侠:1.轩辕剑侠2.逍遥剑侠3.羽尊剑侠怪物:普通精英魔化领主君主技能书设定:黑铜白银紫金装备设定:黑铜白银紫金圣器妖器仙器(伪、真)神器(伪、真)
  • 毒御行

    毒御行

    少年机缘巧合之下获毒手之衣钵;在“武”昌之世以毒行于世间;御行毒之武道,行乱世之英色,这就是毒者之行。
  • 大家一起洗白白

    大家一起洗白白

    小白不可怕,可怕的是明明是只老虎还把自己当成小白的家伙……什么是江湖,就算让金庸古龙也说不明白,说到最后,就变成有人的地方就有江湖……当一个小白被爷爷踢下山,让她去弄明白什么是江湖,二十年前的债与二十年之后的孽就开始轮转,没有人能够阻止!广德四年,朝堂势微,江湖草莽崛起,洞庭山庄武林大会再开。小白仗剑闯江湖,遇到了一个帅哥,一个酒鬼,一个假小子,还有一个说不清道不明的人……正派与魔教,师兄与师妹,爷爷与孙女,男人与女人……江湖永远不会风平浪静,一个简简单单的爱情故事也不会简单……
  • 神魔乱舞之玄天传奇

    神魔乱舞之玄天传奇

    蛮荒世界,野兽众多,妖兽横行,一个没落弱小的人类部落,随时都有覆灭的危险,一位少年,得到万年前纵横天下的先祖的传承,从此斩妖除魔,开始一步步强势的崛起……修炼分为气境,虚境,实境,化境,玄境,神境。神境强者,在苍穹大陆已经至高无上了。妖兽分一级、二级、三级、四级、五级、六级。四级妖兽体内就会结成妖丹,可以修炼,六级妖兽就可以化成人形,变成妖怪,强大无比。丛林里的妖怪,早就按耐不住寂寞,想来消灭整个人类世界,大战一触即发……
  • 狐狸萌妃:野狼殿下来提亲

    狐狸萌妃:野狼殿下来提亲

    【新文求支持,助妖为孽:爷的狂妃太妖娆】桃花深处有妖孽,外表纯良心似虎。第一次见面,他抱她满怀含笑问名。第二次见面,他害她失足落水,毒舌笑话于她。第三次见面,他竟然要和她执手天涯一世相守?!!泥煤,这不科学!某女猫着腰出逃,再次被某妖孽逮到。“别再跟着我,你不是我的菜!”“哦?不是吗?”某妖孽阴阴一笑,“无妨,只要….你是我的菜就够了!”某女哀嚎一声,抱头鼠窜。当“狐狸”卯上妖孽,究竟,谁才是谁的菜?
  • 文苑撷英

    文苑撷英

    大学的功能内涵是随着大学的发展而不断发展变化的。公元11世纪,在博洛尼亚大学等世界最早的大学建立之初,大学没有今天的科学研究、服务社会等诸多功能,它似乎仅仅是一个谈天说地、海阔天空的地方,人才培养的目的很微弱。
  • 斩龙诀

    斩龙诀

    世间有一书,名曰妖魔录,记载所有出现的妖魔,每十年更新一次。白乐励志要在妖魔录上留有自己的一页,他要在这个世界中,找到人们从未见过的大妖魔。他说:不能修炼灵力怎么了!谁也不能阻挡我的梦想!
  • 总裁的专宠,高中小娇妻

    总裁的专宠,高中小娇妻

    喂!难得给你送次饭你就没点表示?”她不高兴的将便当狠狠地放他桌上。“要什么表示?”他似笑非笑的看着眼前佯装生气的她,放下手头的笔起身靠了过去。“你你你你别过来!”她见他靠过来紧张的连话都讲不出来了,他勾起一抹淡笑挑起她的下巴吻了上去。
  • 盛冬寒夏

    盛冬寒夏

    她一直接受他对自己的好,把他当做自己的“哥哥”一般看待,却一直假装不知道他对自己的“别有用心”。直到自己十八岁成人礼的时候,他不出意外对自己表露出他的爱慕,想要和她与子偕老,却没有想到。她甜甜地一笑:“哥哥,对不起,就算你喜欢我,我也不会喜欢你,不是因为,我有喜欢的人了,而是因为,你的世界太肮脏了。”他勾魂的一笑:“呵呵,就算我的世界肮脏,那我也是因为你而脏的,我要你陪我一起下地狱。”
  • 浴血归来之死神,哪里逃

    浴血归来之死神,哪里逃

    神,何为神,拥有至高无上的法力。他们可不是一群善类,也不是一群败类。他们冷血却又有情。1.“你看着好生眼熟。”“我们不熟。”2.“你到底是谁?”“火系新生幻颖。”幻颖,幻影,难道就这么巧吗?3.“小颖颖,我们回去吧。”“你要是孬,你就走,我绝对不会拦你。”“丫的,我今天就证明给你看,我不孬。”“拭目以待。”4“你……”5“欢迎回来,我的神,为夫很想你。”“我们没有结婚。”“夫人这是在向我暗示些什么吗,明日我们便成婚。”“……”怎么还把自己给卖了呢?&欢迎来到神殿,新世纪的大门开启,踏上了这条路,就没有了回头的机会,你们,准备好了吗!