登陆注册
15420500000017

第17章 离子水相互作用力场方法(1)

电解质溶液广泛地存在于自然界和工业生产中,它与生命、科学技术和生产生活密切相关,有关理论研究意义重大。在所有这些溶液体系中,离子间的相互作用以及离子与溶剂分子间的相互作用都是化学家所感兴趣的。然而,相互作用强度以及离子对发生在溶液中的化学反应速率的影响主要取决于离子-溶剂的相互作用。离子的溶剂化使得这些离子成为溶剂化的离子,而不再是“裸离子”;事实上,“裸离子”仅出现在气态而不存在于凝聚态。如果人们想了解某一离子的溶剂化,就必须设想将一个离子放在无限量的溶剂中进行研究。一般实验上研究离子的溶剂化是在正负离子对存在于无限稀释的溶液(构成一个中性溶液)中进行的。对于溶剂的选择,高度结构化的水很受关注,这是由于水资源是最丰富的,水也是最成功和有效的溶剂。水作为一种好的溶剂的优势之一:电解质的解离取决于溶剂化自由能,具有高介电常数的溶剂(水)有高的解离电解质的能力;优势之二:水能够参与势电解质(potentialelectrolytes)的化学质子转移反应,形成离子水溶液,这是因为水既能给势电解质提供质子,又能够从势电解质得到质子,这样在质子转移反应中势电解质经常把水作为伴侣;优势之三:室温下,水在化学和物理方面都是很稳定的,其不像很多有机溶剂会发生蒸发和缓慢解离现象。综上,离子在水溶液中的水合颇受理论和实验研究者的关注。近年来,离子在非水溶液中以及水溶液-有机溶液中的溶剂化的研究也很多。

7.1离子水化

对于电解质水溶液,离子水化产生两种影响:一方面是溶剂对溶质的影响,离子水化减少溶液中自由分子的数量,同时增加离子的体积,因而改变电解质的静态性质(例如活度系数)和动态性质(例如电导);另一方面是溶质对溶剂的影响,带电离子的水化往往破坏附近水层的四面体结构,使水偶极子对离子起定向作用,因而改变附近水分子层的介电常数。水溶液中的离子对水分子结构、介电常数等均有一定的影响,这里我们主要介绍一下离子水化过程中离子对溶剂(水)的结构的影响。离子的效应可以解释如下:水的四面体结构是一个中心水分子通过四个氢键和围绕着的四个水分子连接而成的。两个氢键来自中心水分子的氢和两个邻近水分子的氧的作用,另外两个氢键来自中心水分子的氧和两个邻近水分子的氢的作用。因此,在四个邻近水分子中,两个的氢向外,另两个分子的氢向内。现在把四面体的中心水分子提出,换进一个大小相同或小一点的正离子,如Li+,即令四面体形状没有改变,水的结构也有变化,因为此时四个水分子的氢都是向外,其中两个水分子改变了定向,这就影响到第二层水分子的定向,扰乱原来水分子的结构。如果离子大小不适合,或配位数不是4,扰乱更为严重,因此水的原来结构只能在离中心离子某一距离外得到保存。

我们可以用图7-1来描述一个小离子周围水分子的结构:离子的周围第一层A是冻结在它的表面水分子,第二层B是结构破坏区,第三层C是结构正常的水分子区。从图1.4可知,离子周围的水分子主要可以分为三个区域:primaryregion,即离子的最近邻区,由于离子势场,水分子取向于离子,冻结于离子周围并与离子一起运动;secondaryregion,结构破裂区,水体的正常结构被打破,但它们不与离子一起运动;bulkregion,由于离这个小离子较远,水体结构没有受到影响,仍以四面体的氢键网络连接。对于这三个区域的定义和讨论,人们对primaryregion的定义和研究比较详尽。

对于水合离子的周围环境的结构信息可以通过三类方法来获得:其一,衍射方法包括X射线(X-ray)衍射、中子(neutron)衍射、电子(electron)衍射,EXAFS等;其二,计算机模拟方法包括MonteCarlo模拟和分子动力学(MD)模拟;其三,一些光谱方法,如可视紫外光谱(visible-UVspectroscopy)或红外光谱(infraredspectroscopy)、核磁共振等。上述三类方法中,第三类方法可以获得更多间接的信息,前两种方法能直接给出离子水溶液中围绕着一个离子的水分子的空间排布。一个离子和溶剂分子之间的相互作用使围绕着离子的溶剂分子产生一种特征性的空间排布和定向,这就导致离子周围的水分子与bulkregion的水分子的动力学性质也有差别。

对于一个孤立的离子和一个水分子,其相对的取向必须使势能最小;当几个水分子围绕着这个离子,最佳的取向则要考虑在离子的溶剂层的水分子的瞬时存在,包括这些水分子的相互作用-分子密集而相互排斥或吸引、色散力、多极相互作用。几何的限制排斥那些多于离子配位数的水分子存在于离子附近。离子配位数取决于离子的大小和最近定向于离子的氧原子大小。总之,由于水分子与离子的相互作用强度不同,溶剂分子排列的紧密程度也不同,这就使得这种时间平均的第一溶剂层水分子的数目有所变动。关于离子水溶液的结构性质和动力学性质的详细研究将在以后几个章节中以具体的离子在水中的溶剂化来给出具体分析。

7.2电解质溶液的扩散

扩散是溶液的基本性质。例如把一块糖放入烧杯的水中,过了若干时间,我们发现任何角落的水都含有糖,尽管没有进行搅拌。这是由于糖的分子,通过扩散,穿入水的全体,有如气体充满容器。就分子运动的观点来说,液体微粒的移动并无优先的方向。如果某一定数目的微粒沿一定方向(如x方向)移动,同样数目的微粒沿着相反方向(-x方向)移动。当两个不同浓度的溶液彼此接触时,高浓区的一部分溶质微粒移入低浓区,低浓区的一部分溶质微粒移入高浓区。但是在单位体积内,前者的数目多于后者,结果是某一净量的溶质从高浓区移入低浓区。另一方面,由于低浓区的溶剂浓度高于高浓区,溶剂分子以相反的方向从溶质的低浓区移入高浓区。这两个过程不断地进行,直到整个溶液只有一个均匀浓度。浓度差所产生的微粒移动叫做扩散,或称平动扩散。在单独电解质溶液中,为了保持溶液的中和,正负离子以相同的速度进行扩散。另外一种扩散是极少量的一种离子在大量的另一电解质(叫支持电解质)溶液中进行扩散。在整个过程中,后者的浓度保持恒定,这种扩散叫做自扩散(self-diffusion)。

液体扩散的基本公式是斐克(Fick)的第一定律和第二定律。第一定律:“物质通量J(fluxofmatter,即单位时间内走过单位面积的物质量)和它的浓度梯度c/x成正比”:

式中,D是比例常数,叫做扩散系数,负的符号表示扩散沿着浓度下降的方向进行。

虽然在实验里D接近常数,但并不是真的常数,它是浓度的函数,并且可能是浓度梯度的函数。D的数值决定于实验条件。如果在一定温度下,D是从一系列浓度测出的平均值,它叫做积分扩散系数。公式(7-1)只能用在稳态方法的扩散,即c/x不随时间而变化的扩散。在许多实验中,c和c/x都是距离x和时间t的函数。在这样的情形下,我们应采用斐克(Fick)第二定律:

下面简单介绍两种在分子动力学模拟中计算扩散系数D的方法:一种方法是爱因斯坦关系式(Einsteinrelationship)给出稳态溶液的扩散系数与均方位移2r(t)r(0)的关系,另一种方法是根据速度自相关函数v()v(0)来计算扩散系数,根据Green-Kubo公式:

在极限条件下:

因此,通过积分Green-Kubo公式也可以得到扩散系数。

7.3离子水分子体系的相互作用势能模型

同类推荐
  • 探究式科普丛书-光和热的能量释放:火

    探究式科普丛书-光和热的能量释放:火

    本书主要介绍了火的发明、利用与危害,以及火与人类文明进程的密切关系。主要内容包括人类的进步—古人取火与用火知识篇;跳动的精灵—火焰知识篇等。
  • 惊涛动力:威力无比的海洋能

    惊涛动力:威力无比的海洋能

    世界本来就是充满了未知的,而好奇心正是推动世界前进的重要力量之一。浩瀚无边的海洋,一道道波浪不断涌来,撞击在岩石上,发出天崩地裂的吼声,喷溅着雪白的泡沫。在这蔚蓝的海洋中蕴藏着威力无比的能量,
  • 人类学世纪真言

    人类学世纪真言

    从1999年开始,《广西民族学院学报》的哲学社会科学版在徐杰舜教授的主持之下,开辟了一个《人类学学者访谈录》的专栏。经过4年多时间的努力,徐先生和他的同事们访问了20多位包括台湾和香港在内的人类学工作者,并以翔实长篇幅刊登于专栏中。由于我一直是《广西民族学院学报》的忠实读者,所以几乎所有的访谈录都浏览阅读过,觉得很有意思,增加了许多以前不知道的行内故事,因此也常常对这些访谈录有先睹为快的感觉。如今,徐教授将这30多篇访谈录汇编出版为《人类学世纪坦言》一书,让更多的读者能阅读到学者们的“坦言”。
  • 探究式科普丛书-探索宇宙的助跑器:火箭

    探究式科普丛书-探索宇宙的助跑器:火箭

    本书引人入胜地描述了与太空科技有关的历史事件以及重要的科学原理。通过阅读本书,希望广大青少年朋友可以从中学习到一些具有实用价值的航空航天知识。
热门推荐
  • 神医狂妃:腹黑殿下勿打扰

    神医狂妃:腹黑殿下勿打扰

    谁说我废材,谁说我是五系全无的傻子,看废材逆袭。大闹异陆。穿越?马上复仇,将那些废物除掉,谁叫我是王牌特工!可是那个腹黑的男人是哪冒出来的?
  • 百里机关城

    百里机关城

    一曲歌!!!一杯酒!!!谈尽人生百态!!可曲终酒尽!!谁又能放下这爱恨情仇!!谁又能逃的出这命运的枷锁!!看两位命运曲折的少年如何面对两段坦途的人生!!!
  • 天界,来战

    天界,来战

    时少来袭,这是他的天下。撩妹?不!咋们的蓝颜伪男神励志要泡咋家大神!男女通吃!各方系统快快来助咋家宿主,完成这个重大的任务!
  • 百姓私房菜

    百姓私房菜

    本书汇百家之所长,经典私房菜的制作过程,让您可以在自家的厨房里,利用最简单的器具,轻松制作出好吃、好看、好营养、好创意的各种家常菜。您只需要举一反三,便能让普通的家常菜因独特的做法而与众不同。还有“厨房小常识”告诉你健康饮食生活的小窍门!
  • 万古传世录

    万古传世录

    青天难上,他却誓上青天;神尊难成,他却弑杀神尊;命运难控,他却逆反命运;天道难寻,他却碎裂天道。在阴谋漩涡的沉沦下,他有过独战正道的沧桑;在爱恨情仇的交织中,他有过天才仰望的背影;在血泪纵横的岁月里,他有过秒杀魔修的辉煌;在与天抗衡的对决上,他有过力战八荒的神迹。六张神秘的符文卷轴,带来绝世功法的同时,又蕴含着动魄的凶险与惊人的布局,且看一个乡野之子如何步步为营,登上武道巅峰,在神魔之间缔造一段万古传世之说。
  • 雨寂之爱恨骄织

    雨寂之爱恨骄织

    她是一名女警,为民除害的好警察。但是,外表坚强的她,内心无比孤独而脆弱。自从被母亲抛弃后,她就再也没有露出过笑容,唯一的朋友就是书籍。也许老天爷知道她缺乏爱吧,所以才让如此好身手的她穿越了……穿越醒来,她发现自己被某人紧搂抱着,难以呼吸……【情节虚构,请勿模仿】
  • 邪王独宠之吸血鬼公主

    邪王独宠之吸血鬼公主

    “喂!我和你什么怨什么仇,你来追杀我。”一个绝美少女一边极速躲着一边说,对面一个桃花眼男子,十分俊俏,虽然蒙着面但是那好看的眼一猜就是个美男,
  • 绝色妖娆妃倾城

    绝色妖娆妃倾城

    出门踩香蕉皮滑倒而死,若是在穿越前,安堕绝对不会相信,但是,穿越后她信了。一个人有多倒霉?大概再也没有人比安堕还倒霉的了。她乃21世纪少男杀手,要身材有身材,要脸蛋有脸蛋,有钱有势,可是,穿越后,是碧雨大陆远近闻名的废材+丑女+花痴+傻女,有人比她悲催么,没事,废材么?擦亮你的狗眼,姐要是废材你全家都是废材,姐可是炼药师、炼器师…;丑女么?你才丑女你全家都是丑女,姐只不过是脸上蒙了一层“灰”;花痴?你没搞错吧!姐是花痴?姐要是花痴早就跟美男跑了,干嘛留下来!傻女?不好意思,姐一点都不傻,傻的是前主好不好,再说姐傻,姐分分钟虐死你,
  • exo忌爱

    exo忌爱

    这个世界看似平静,却影藏着无数杀机,每个夜晚,你是否能听见,与白天不一样的声音?别想逃,闯入了这个世界,你就别再想出去,这里不需要弱者,不需要怜悯,你一软弱,别人就会踩跨你,听着,对你好的人,他们只会利用你,你知道你自己的身份吗?嘘,闭上眼,倾听,在呼唤你的声音。忌爱,我们的爱,即将开始。欢迎加入小麦滴读者群欧~~,群号码送上:468411504
  • 历届新概念一等奖获得者作文精选(小说卷)

    历届新概念一等奖获得者作文精选(小说卷)

    新思维所有作品都体现出了作者的创造性、发散性思维,作者们打破旧观念、旧规范的束缚,打破僵化保守,处在无拘无束的新思维中创作所得。新表达作品的创作不受题材、体裁限制,作者使用属于自己的充满个性的语言,杜绝套话,杜绝千人一面,杜绝众口一词。真体验真实、真切、真诚、真挚地关注、感受、体察生活,并将这一切,反映在作品中。